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AIIItnd-We study the interaction between an uItruonic traDlducer, typical of those presently
used in Nondestructive Teatml (ND1) practice, and a telt medium, throup a viscous couplant.
The traDlduc:in. clement is a circular piczoclectric cylinder of class C.., polarized in the thickness
direction with c1cetrodcd faces and insulated lateral surface. The electrodes are connected by an
electric circuit, and the transducer is considered to be either scndinl or receiving. dependinl on
whether or not a course of specified voltaIC is included in the circuit. The piczoclectric disc is
modeled as a first order linear plate of finite extent. The test medium is idcalized to be an elastic
half-spacc.

We present the steady vibration problem of the transducer/telt medium configuration forced
by the voltaIC source in the transducer circuit and an inc:idcnt wave in the test medium. This
problem is reduced to coupled intep equations for the tonionlcss axisymmetric components of
the interface tractions on the piezoelectric disc's faces. VarioUl approximations of the problem are
also considered which allow us to obtain the transducer output without salvinl these intep
equations.

I. INTRODUCTION

This paper is concerned with the interaction of an electro-mechanical transducer, either
sending or receiving, with an elastic half-space. It is motivated by a desire to increase the
understanding of the engineering practice ofNondestructive Testing (NDT). In NOT work
a receiving transducer, consisting of a transducing element that is mounted in a
complicated casing and coupled to a test medium surface, receives mechanical wave
disturbances generated either by a sending transducer or an event such as a spontaneous
fracture. The sending transducer may be a device similar to the receiving transducer, except
that a driving voltage source is included in its electric circuit. From the electrical output
of the receiving transducer, i.e. the measured voltage drop across the transducing element
or the current in the circuit, the tester wishes to determine the location, geometry and
orientation of flaws present in the test medium.

The interaction between the transducer unit and the test medium is complex. The
transduction process involves many mechanisms which are not yet well understood, such
as the transducer/test medium coupling, and the transducer unit typical of those
commercially available for NOT applications is composed of various materials and shapes
that often do not lend themselves to a simple analysis.

As described in Sachse and Hsu[I], the usual treatment of the interaction involves a
reduction of the transduction process to a one dimensional linear model by adopting three
simplifying assumptions. The transducer bottom surface is coupled in some manner to a
portion aB of the surface of the test medium. The transducing element has across it a
voltage V(/) and is connected electrically to a circuit carrying current 1(/) (see Fig. 1). In
[1] the transduction process is represented symbolically as

V(/) T(x, I)
~

1(/) u(x, I)'
(1.1)

where T(x, t) and u(x, I) are the traction and displacement, respectively, on the contact
portion aB of the test medium surface. In the usual treatment, the' first simplifying
assumption is that the transducer element deformation occurs in a single mode, i.e. the
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Fig. 1. Transducer unit and test medium.

wave modes are uncoupled and only a single scalar component ofeach of the traction and
displacement are related to the voltage and current. For a compressional mode transducer,
as will be studied in this paper, this assumption reduces eqn (1.1) to

J/(I) ~(x, I)
<:;> ,

1(1) u.(x, I)
(1.2)

where the z direction is normal to the test medium surface oB. The second assumption is
that oB is small and/or the traction and displacement fields are uniform over oB, so that
eqn (1.2) reduces to

J/(I) ~(I)
<:;>

1(/) u,(I).
(1.3)

These first two assumptions reduce the transduction process to a one dimensional model.
The third assumption usually made is that the relationships between the scalar quantities
J/(I), 1(/), T.(t) and U.{I) are linear so that they are related by a transduction matrix
according to

[V(O] = [A B][TiO].
l(t) C D uz;(I)

(1.4)

For purposes of transducer design. one dimensional analyses can be used to express
the transduction matrix in terms of quantities pertaining to the various elements of the
transducer unit and couplant (to characterize existing transducers most often the device
is assumed to be linear and one dimensional and the transduction matrix is obtained
experimentally; see [I]). These analyses fall into two groups, the first of which treats the
transducer as an infinite plate executing a specified motion in a particular thickness mode.
An example of this group is found in Meeker[2]. where it is assumed that the transducing
element is an infinite piezoelectric plate governed by the linear three dimensional theory
(Tiersten[3]), with boundary conditions and material symmetries that allow a specified
thickness mode of vibration. Relations between the boundary tractions and displacements
and transducer voltage and current are explicitly expressed in terms of the piezoelectric
constants. If the plate is attached to a backing or coupled to a structure, however,
impedances must be postulated, which can only be determined experimentally.
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The second group of analyses is based on the equivalent circuit approach, as in
Mason[4]. Here the transducer is assumed to be a finite plate executing a specified one
dimensional motion (no attempt is made to show that this motion can be supported in
the three dimensional continuum as is done in the prefjous group of analyses; it is
understood that the other coupled modes are neglected). TIie resulting equations involving
face resultant forces and displacements, current and voltage are recognized as being
identical to those resulting from the analysis of an "equivalent" circuit, in which the scalar
force and displacement components, functions only of time, are treated as voltage and
current, respectively. As more mechanical elements, e.g. backings and couplants, are added
to the transducer, additional impedances are inserted in the equivalent circuit (see
Kossof[S] and Sittig[6]). It is shown by Meeker[2] that the results of the equivalent circuit
approach can be the same as those given by the infinite plate approach.

The .above-mentioned one dimensional analyses ignore the effect on the transducer
voltage and current of crystal deformation dependent on the in plane coordinates, called
contour modes. In the first group contour modes cannot exist since the plate is assumed
to be infinite, and in the second group such modes are neglected. In the works of Bugdayci
and Bogy[8], Bogy and Bechtel[9] and Bogy and Mui[lO] experimental results for a
piezoelectric disc with traction free edge and specified face tractions show a substantial,
and in some cases dominant, dependence of the voltage across the faces on the radial
modes. When the linear first order plate theory derived in Bugdayci and Bogy[7] is used
to analyze this problem, this dependence is predicted. For the piezoelectric disc coupled
to an elastic half-space, this dependence on the radial modes is also found to be strong,
both experimentally (Bogy and Su[ll]) and analytically (Bechtel[12]).

Hence, in order for a real transducer to respond as a one dimensional device, the
piezoelectric disc must be modified considerably, e.g. by the addition of front plates and
backing materials to effect heavy damping and impedance matching. The resulting typical
commercial transducer unit is then without many of the response characteristics that make
the bare piezoelectric disc undesirable as a transducer for NDT work. However, its design
is much more complicated than the simple crystals originally analysed by Meeker[2] or
Mason[4], and to perform an accurate analysis of it is difficult, as will be evidenced in
Section 2 of this paper.

We consider a transducer unit typical of the backed commercial devices currently
available for NDT applications. Its transducing element is a piezoelectric cylinder which
is an element in an electric circuit. For the case of a sending transducer we include a
specified voltage source in the circuit, rather than merely specifying the voltage difference
between the crystal electrodes. The transducer bottom surface contacts the surface of the
test medium through a viscous couplant.

In the analysis of the transducer/test medium interaction we make only the third of
the three previously listed simplifying assumptions on the transduction process, that it is
linear. The piezoelectric disc is modeled as a first order linear plate of finite extent, so as
to include the effects of the contour modes, using the theory derived in [7] and developed
in [9]. We include the effects of the backing and constraining casing. However, we do not
postulate, for instance, that the backing is impedance matched with the disc, or that the
transducer/test medium assembly is "tuned" so that the crystal motion is entirely or
primarily in a thickness dilatation mode. Results of the analysis would be to identify the
backing material parameters for which an impedance match will occur, and to determine
if, the above-mentioned tuning is possible. A particular frequency bandwidth of operation
is not specified a priori, except that the piezoelectric plate theory should be applicable~

In Section 2 the steady vibration problem of the transducer unit excited by a harmonic
voltage source, harmonic forces on the casing outer surface and an incident surface wave
on the test medium is formulated and reduced to a set ofintegral equations for components
of the interface tractions on the piezoelectric crystal top and bottom surfaces.' These
integral equations are not solved in this paper, but in Section 3 we present approximations
to the problem formulations which allow us to obtain parts of the complete solution, e.g.
the transducer current and voltage, without solving the integral equations explicitly for the
interface traction components.
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In our analyses we are primarily concerned with the transduction process between the
voltage across the piezoelectric disc (and the current in the transducer circuit) and the
transducer/test medium configuration deformations and tractions. We will focus our
attention to those parts of the problems that involve the transducer voltage and current,
and we will deduce the following important result: For an axisymmetric transducer unit
of the type considered here, the voltage V(t) and current I(t) couple only with the
torsionless axisymmetric parts of the transducer/test medium deformations and tractions.
This is to be contrasted with the first two assumptions of the conventional treatment, i.e.
that (1) V(t) and I(t) couple only with the normal components of the interface tractions
and displacement (for the thickness dilatation mode transducers studied here), and (2)
these components are functions only of time and are independent ofposition (see eqns (1.2)
and (1.3».

Section 4 presents a summary and some conclusions.

2. TIME HARMONIC PROBLEM

We consider the steady vibration problem of a transducer, typical of those presently
used in NOT practice, forced by a voltage source in the transducer circuit, tractions on
its casing outer surface, and an incident straight crested surface wave on the test medium
to which it is coupled. All of these forcing functions are assumed here to be harmonic in
time with frequency 0>. The basic structure of a typical commercial ultrasonic transducer
unit is shown in Fig. 2 (see [13]). The transducing element in the transducer is assumed
to be a piezoelectric circular cylinder ofclass C6ll, polarized in the thickness direction, with
electroded top and bottom surfaces. Its lateral surface is electrically insulated. The bottom
electroded surface is covered by a wear resistant plate, and to the top surface is attached
a backing material, most commonly tungsten powder in epoxy. These elements are
enclosed in a protective metal and plastic casing.

The frontface is mechanically coupled to the test medium surface by a viscous fluid,
as is the usual practice (see [14]). This surface is usually planar in the coupling region. The
top and bottom electroded surfaces of the piezoelectric disc are connected electrically
through a circuit.

When the unit is employed as a receiving transducer, the incident mechanical signal,
travelling through the test medium, is transmitted through the viscous couplant and excites
a voltage across the piezoelectric crystal and a current in the transducer circuit. When used
as a sending transducer, the voltage source in the transducer circuit causes the piezoelectric
crystal to mechanically excite the test structure through the couplant.

The problem described above is very complex, due primarily to the complicated struc­
ture of the transducer unit and the nature of the transducer/test medium coupling. Here we
model this problem so that the formulation is reasonably accurate without being so involved
as to prevent any meaningful progress toward a solution. Hence, we must decide which
features of the transducer/test medium configuration warrant a precise modeling, and which
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Fig. 2. Basic structure of an ultrasonic transducer based on a piezoelectric disc (from Bond el
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may be neglected or modeled in a simple way. A more complete discussion of this modeling
can be found in [12], on which this paper is based.

The piezoelectric crystal and transducer circuit are the same as discussed in Bogy and
Bechtel[9], and they are modeled by the first-order plate theory and circuit equation
developed in Bugdayci and Bogy[7] and [9]. It should be emphasized that the transducer
circuit is the electrical circuit in which the piezoelectric disc is an element, and not an
"equivalent" circuit as discussed in Section I. The test medium is assumed to be a linear
elastic isotropic homogeneous half-space. The presence of the wear plate on the frontface
and any effects it has on the crystal/elastic half-space coupling are ignored. This coupling
is modeled as in Angel and Bogy[lS], i.e. the couplant which bonds the crystal bottom
surface to the elastic half-space surface is assumed to be of negligible thickness and its
inertial effects are ignored; in the contact region the displacements of the crystal bottom
surface and half-space surface in the directional normal to the interface coincide, while the
velocity difference in a direction along the interface is proportional by a factor " to the
traction component in that direction. The part of the half-space surface not coupled to the
crystal is assumed traction free. The gravity body forces in both the crystal and the
half-space equations of motion are neglected.

The insulation is considered as part of the casing, and the casing and backing are
assumed to be symmetric about the axis of the crystal cylinder. We further assume that the
casing is rigid.

It has been shown in Bogy and Su[ll] that the backing bonded to the crystal top surface
has the. greatest effect on the response, e.g. altering the front wear plate or crystal lateral
surface mechanical conditions produces less change in the response than changing the
crystal backing conditions. The presence of the backing reduces the radial and thickness
mode ringing that was shown in[8-11] to dominate the response of the unbacked crystal.
This is a result of the damping properties of the backing material and the impedance match
between the crystal and the backing. This impedance match results in a low reflection
coefficient of waves in the crystal that are incident on the crystal/backing interface.
Therefore, in order to accurately model a typical transducer unit, which exhibits little radial
and thickness mode ringing, it is essential for the effect of the backing to be adequately
represented. In [12] we consider two models for the backing, a viscoelastic continuum and
a visco-elastic foundation. In this paper we present the analysis only for the latter.

As in [9] the piezoelectric crystal motion is referred to a cylindrical polar coordinate
system (r, 0, z) with origin at the center ofthe crystal and er along the axis ofsymmetry. The
casing motion is also referred to this coordinate system. The elasti~ half-space motion is
referred to a primed system (r', 0/, z/) given by (see Fig. 3)

r/=r,O'= -O,z'= -z-b

where b is half of the crystal thickness.

z

1- 0

T
2b

z'
Fig. 3. Coordinate system placement.

(2.1)
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According to the first order plate theory of [7,9], we assume the displacement and
potential in the crystal to be of the form

uJ(r, 0, z, t) = uJOl(r, 0, I) + uJ!l(r, 0, I) cos ~ (I -~). j =r, 0, z,

¢(r, 0, z, t) =~¢ +(t) +¢ -(t)] +~B(t) +¢(Il(r, 0, t) sin ~ (I -~). (2.2)

where ¢ +(t) and ¢ -(I) are the electrical potentials at the top and bottom surfaces,
respectively, of the crystal and B(t) is half of the voltage drop V(t) across the crystal, i.e.

B(t) = [¢ +(t) - ¢ -(t)]/2 = V(t)/2.

For the crystal and elastic half-space we define theta averaged functions by

!(r, t) =(27t )-1 f:/(r, 8, I) dO,

!(r', z', t) =(27t)-1 f:/'(r" 8', z', t) dO',

(2.3)

(2.4)

respectively.
In [12] it is demonstrated that the transduction process of eqn (1.1) couples the

transducer voltage 2B(t) and transducer current l(t) with only the torsionless axisym­
metric parts of the transducer unit and structure deformations, not with their theta
dependent or axisymmetric torsion parts. The result differs from the common simplifying
assumptions I and 2 as discussed in the Introduction (eqns (1.1) and (1.2», and is due to
the presence of the face electrodes on the piezoelectric crystal and the axisymmetry of our
models for the transducer unit, couplant and test medium. Since we are primarily interested
here in obtaining output 2B(t) and l(t) of the trandsucer, we consider only the torsionless
axisymmetric part of the problem for conditions of steady vibration.

For a general theta-averaged function!(r, I) defined on the crystal plate we specify the
time dependence by

!(r, t) =Re f.J'(r) e- ioll
}.

Likewise, on the elastic half-space we write

!(r', z', I) = Re f.J"(r', z') e- ioll
}.

For functions of time only, e.g. B(t), we write

(2.5)

(2.6)

(2.7)

Let the elastic half-space displacement be composed of incident and scattered parts,
where the incident part is prescribed to be a straight crested surface wave travelling in the
XI' direction, and the scattered part vanishes at points remote from the crystal/elastic
half-space interface. Then, using superscripts (I) and (S) to denote "incident" and
"scattered", we have

u' =u(l) + u(S), lim u(oS?(x', t) =0,
Is'I"'""

u\9(x/, t) = Re {U\I)(X2') e-iol(l-ljl%\'l}, u~9(x/, t) =0,

u~9(x/, t) = Re {U~I)(X2') e-iol(l-ljl%I'l}, (2.8)
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iW>(X2') =Uo11 ;2[2 ~-OIIlI-IX2' - (2 - "i) e- OIIlI - 2X2'],

815

(2.8) contd.

£ .. SdS2,SI2 .. (1- 2v)Pe[2Jl(l- v)]-l,sl" PeIJl,

where "i is the root of the Rayleigh equation, ,,6 - 8,,· + (24 - 16£~,,2 - 16(1 - £~ .. 0,
that is real, positive and 0 <,,2 < I; Pet Jl and v pertain to the elastic half-space, and Uo
is a specified scalar amplitude of the incident wave. Using eqns (2.4), (2.6) and (2.8) we
obtain the theta averaged cylindrical components

and

u;.(r', z') = u~~)(r', z') + ii1\I)(z')J.(cusRr'),

u;.(r', z') = u~.r)(r', z') + i1~! (Z')JO(CUSRr') ,

lim (u~~), u~.r» = lim (u~~), u~.r» = o.
,'-.x l'....x

(2.9)

(2.10)

The problem formulation will exhibit several functions and physical parameters. The
traction amplitudes on the crystal top surface (z .. b), crystal bottom surface (z.. - b),
and test medium surface (z' .. 0) are denoted as T-(r, 8, t), T+(r, 8, t) and T'(r', 8', t),
respectively. The constants P., CIJ, £ij and eu pertain to the piezoelectric material of the
crystal, as described in [7], the constants L, Rand C are the inductance, resistance and
capacitance of the elements in the transducer circuit, the constants ml , CI , kl , m", C_ and
k_ pertain to the viscoelastic foundation backing model, and u?, and F2c are the
components in the axial direction of the casing displacement and force resultant due to
the tractions on the casing outer surface. M is the mass of the rigid casing. Before
presenting the problem formulation, we define the following dimensionless quantities.

; = ria .. r'la i =z'la a(O) = u(O)/a a(l) == u(I)/a u~(O) - u·(O)/b, " r" ",-.,

~(S) ·(S)I ~ I ~CG CGlb PI (Ib )t -u, == u,. a, Uo == Uo a'"2 == U2 ,r == a C44 , ,

if = (a/bc«)t, +,.G = (4I1r 2c«)t: -', k = (4hr2c«)t: + ,

t, = t;./....,t, = t~/Jl, cO == (2bln)(Pclc44)If2W, 8 .. (£nfb2C44)If2B,

q == a -2(C44£~-If2q, 1.. (2bla21tC44)(Pc/£~If2I,£ == (£rJ.fb'I.C44)If2E,

l == (n2a2c44£nf4b3pc)L, /l == (na2£rJ2b2)(c44!pc)If2R,

C== (b la2£n)C, clI = Cq/C44' ill = £uf£22'

ill = (C44£22)-(If2)elJt " == (na212b2)(p,c44)-(If2)", '"I == (iIbPc)m"

cl .. (na2/2b2)(p,c44) -(lf2)cl' £, = (a2Ibc44)k1' m" .. (Pcb)-Im.,

M= (nI4pca2b)M, i == (nal2b)2, j/ == Pec44!pcJl, &, == JlIC44'

- (- I )1f2 - ( - I )1f2 - (-, J )1f2s. == UC44 Pc SI' S2 == UC44 Pc S2' SR == UC44IPc SR'

(2.11)
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Dropping the tildes, we state the nondimensional torsionless axisymmetric steady
vibration problem as follows.

Crystal extensional
Equations of motion (0 < r < 1):

CIlaJ'I(U~» + O'wzu~o) + «c.zu~~! = - (1/2)(F + H),

- 8«0'71: -2c1Zr -1(ru~O».r + aJ'o(u~·» + 0'(w 2 - cn)u~l) = O'(G - K) + 8«0'71: -zenD, (2.12)

in which aJ'o and aJ'. are the differential operators defined by

aZ 1 a k
aJ',,=-+-- --,k =0, 1.

iJr2 r or r2

Transducer charge, current and circuit equation:

Boundary conditions:

Crystal flexural
Equations of motion and charge equation (0 < r < 1):

(2.13)

(2.14)

(2.15)

cIILfI(U~I) +0'(w2- l)u~l) - 2«u~~ - (e16 + eZl)q,~) = F - H,

4«0'71: -zr -1(ru~I) ... + aJ'O<u}O» + O'W2U~O) + 4«71: -2e1t#lO(q,(I» = - (0' /2)(G + K), (2.16)

0'(e16 + e21)r -1(ru~I).r + 2«elt#lO(U~O» - £11aJ'o(q,{l» + 0'q,(1) = O.

Boundary conditions:

U~I)(O) = u~I)(l) = u~(O) = q,~)(0) = 0,

2«eI6u~~(l) - £1Iq,~)(I) = 0,

(71:2/4)u}~(I) + «ezlq,~)(I) =O.

(2.17)

In Ill] it is concluded that, when modeling the typical commercial transducer unit, the
selection of crystal mechanical edge conditions can be made on the basis of convenience
of analysis rather than on the basis of apparent transducer design, since changes in them
had little effect on the backed transducer's output. The edge condition which results in the
simplest analysis was seen in [12] to be that of smooth edge contact with the casing, i.e.
the crystal lateral boundary is constrained by the smooth, rigid casing surface r = a,
o~ (J < 271:, - b < z < b. The boundary conditions, eqns (2.15),,4 and (2.17),,6 result from
that choice (in [12] the crystal mechanical edge conditions of traction free edge, crystal edge
simply supported by casing and crystal edge clamped to casing are also considered).
Equation (2.17)5 is a consequence of the assumption that the crystal lateral surface is
electrically insulated.

Elastic half-space scattered wave
Equations of motion (0 < r, Z < (0):
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2(1- v)(l- 2v)-lal (u!S» + u!~z+ rry~2(J)2U!S) + (I - 2V)-IU~~, = 0, (2.18)

(1 - 2v) -Ir -1(ru!S),n + ao(u~S) + 2(1 - V)(1 - 2v) -lu~2 + u-y/w2U~S} = O.

Boundary conditions:

u!S)(O, z) = u~~(O, z) = 0,

lim (u~S), u~S) = lim (u~S), u~S) = 0,
, ...«) Z...co

and at z =0:

(S) (S) {~T,r<l
u,,z +u,... = 0 r > I '

-I( (S) (I _ ) (S) _ {- 2-1(1- 2v)T, r < I
vr ru, ... + V u,,, - 0 r> r

(2.19)

(2.20)

(2.21)

Center conditions, eqns (2.1 5)1,3' (2.17)1,3 and (2.19)1,2 follow from eqns (2.2) and (2.4)
and the requirements that the crystal and the half-space remain simply connected and do
not form a cusp at the origin. The center condition eqn (2.17)4 follows from eqn (2.4) and
the condition that the divergence of the electric displacement vector is zero at the origin.

Casing rigid body motion

ufG =(M(J)2)-{(n2/2) fol

K(r)r dr - F{J.

with F{ the specified amplitude of an axial force applied to the casing. Only the ufG
component of the casing rigid body motion enters in the B(t) problem.

Crystal/elastic half-space interface conditions (0 < r < I)

F(r) + icz"c[ - u~)(r) + u~I)(r) + u~S)(r, 0)] = WICUoJl(wsRr), (2.22)

u~)(r) - u~I)(r) + (2/n)04u~S)(r, 0) = - (2/n )(1I/2i[2'7 ;-2(CXI - CX2-1) + cx2-llJO<(J)Sar)Uo,

F(r) = - (2/n)(11/26~T,(r), G(r) = (4/n2)6~T,(r).

Equation (2.22) is the transducer/test medium coupling model of [IS] as described earlier
in this section.

Crystal/backing interface conditions (0 < r < I)

H(r) =«(J)2m, + ioJc, - kJ[u~)(r) + u!I)(r)],

K(r) = «(J)2m•+ i(J)C. - kJ(u~(r) + u~I)(r) - ufG]. (2.23)

Equation (2.23) reflects the viscoelastic foundation backing model considered in [12].
In obtaining the analytWal solution to the nondimensional transducer voltage problem,

eqns (2.12)-(2.23), the following scheme is utilized, so as to treat separately the crystal
extensional, crystal ftexural and elastic half-space problems for as long as possible. The
crystal extensional deformations, transducer circuit current and transducer voltage are
solved for in terms of the unknown top and bottom surface tractions F, G, Hand K, and
the specified voltage of E. The crystal flexural deformations are found in terms of the
unknown tractions F,G, Hand K. The solution for the scattered wave field is given in
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tenns of the interface tractions Tr and T,. (The casing motion is already expressed by eqn
(2.21) in tenns of K and the specified resultant force F{.) Finally, we apply the interface
conditions at the crystal top and bottom surfaces, eqns (2.22) and (2.23), to obtain coupled
integral equations for the interface tractions F, G, H, K, Tr and T.. in tenns of the specified
quantities E, F{ and !lo.

We use the theory of Bessel functions to obtain the solution (see [8]). Let l",
n =0,1,2, ... , be the nonnegative roots of

and let '(r)and tI(r) be any functions suitably defined on 0 < r < 1, with

'(0) ='(1) = tI,r(O) = fI,r(l) =O.

Then

with

"'O'n) = I '(r)rJ10·nr) dr == )fl['; r-+A.,,],

~(l,,) = I tI(r)rJo(l"r) dr == )fo[tI; r-+AJ.

Also

(2.24)

(2.25)

(2.26)

(2.27)

{
0 A.n>0

)fo[I; r-+AJ = 1/2 A.n =O'

In view of eqns (2.15) and (2.25)-(2.26) we may write for the extensional problem

(O)() 2 ~ -(0)( lJ J1(A.nr) (I)() 2 ~ A(l1I 1 ) Jo(Anr) (2.29)
Ur r = i.. u, A J. 2IA)'U' r = i.. U,"\An J.2(A)·

~.>o 0 \ • ~>o 0 n

Next we apply Hankel transforms as indicated by)fl [eqn (2.12)1; r ....A.n > 0] and 1 0 [eqn
(2. 12h; r-+A. > 0] and, solving the resulting equations, we obtain for A.n> 0

where

u~°l(A.n) = {8 I
E(A.n)[F(AJ + R(An)] + 8l(An)[a(A.) - i(A,J]}/tIIE(A,J,

U~I)(A.n) = {t/>/(An)[F(A,J +R(An)] + et>2E (A" )[a(A.n) - K(A.)]}/tIIE(A.n),
(2.30)
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"'E(A.,,) =CQ4O'2Cii 1_ CQ2O' [A.,,2(1 + Cij I) + O'C22CIII] + )"/I().,If)'

8I
E()"If) =(- CQ2O' + )"1f2 + O'cn>/2cll' 8l(A.,,) =A."tXCI2O' fCll'

tPl E(A.,,) = - 4«O'CI2A."fn2cll' tPl(A.,,) =0' (CQ 20' ICll - ).,/),

I(A-If) = A-If2 + O'C22 - 8aZO'c12/r Cl1.
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(2.31)

Also, the Hankel transform K o [eqn (2.121; r-+Ao = 0] and eqn (2.14) are solved to yield

U!I)(O) = {ylIG(O) - K(O)] +YlE}/.1, B = {P2[O(O) - K(O)] +PsE}/.1, (2.32)

with

.1 =d(CQ2 - C22 - 4tXe~n -I) + 2(CQ2 - cn>n -I, Y2E= d +2n -I,

ysE= - 4tXn - 3e22, P2 =dtte22,

Ps = ( - CQ2 +cn}n -I, d = - CQ2L - ioJR + C - I.

From eqns (2.29K2.33) we obtain for the extensional problem

(2.33)

(0) 't' [UI(A."r)8I
E
(A.,,)] [t )., D(A] ~ [UI(A."r)8l(A.,,)] [O(~ X A ]

u, (r) = A,,~o J02().,,,)"'E().,,,) ( If) + J + J.~o N(A.,,)1/IE(A.,,) "'If) - (,,),

u~I)(r)= L [UO<l"r)tP~E(A")] [t(A.,,) + D(A.,,)] +2Y2
E

[0(0) - X(O)]
J.. > 0 Jo2(A.,,)1/I (A.,,) A

+ ~ [Uo(A.,,' )tPl(A.If)] [O()" ) _ X()., )] +2YsE E (2.34)Co J02(A.If)"'E(A.,,) " If .1'

B = P24-I[G(O) - t(O)) + {3s4- IE, 1= -(;CAJ,r l )(2B + E).

Recall that the primary goal of the steady vibration problem under conaideration is
to express the transducer voltage amplitude 2B and the transducer circuit current
amplitude I as functions of the specified incident surface wave amplitude "0, impressed
voltage amplitude E, resultant amplitude F{ of the traction on the casing outer surface,
and frequency of vibration CQ. In eqn (2.34) we see that B and J may be expressed
completely in terms of E and [0(0) - X(O)], which is the non-dimensional form of the
"compressional" resultant amplitude, i.e.

(0 efT • •- Jo Jo [Tu(r, 9, b) + Tu(r,9, -b»)r drd9 = (1T
3a2c...I2)[G(0) - K(O»). (2.35)

This has been accomplished by considering only the crystal extensional problem. However,
the determination of [0(0) - .t(0)] wiD require consideration of the complete torsionless
axisymmetric problem, i.e. the crystal flexural, elastic half-space and casing motion
problems and the interface conditions, in addition to the crystal extenaionaJ problem.

In a manner similar to that above, we obtain the crystal flexural displacement
coll1ponents from eqns (2.16) and (2.17).
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y{ = _ (2w 2) - I,

lfIF().n) = ).n6CII(£1I + 8cx 2
1t -2ef6) + ).n4O'{ - W2[£II(l + CII) + 8/X21t -2et6]

+ CII + £11 + (e16 + e21)2 - 8/X 2
1t -2(£11 + et6 + 2e\6e21)}

+ )./O'2{c llw
4- W

2
[£1I + CII + I + (e16 + e21 )2] + I - 8cx 21t -2} + O' 3(w 4- ( 2),

ot().n) =w2O'(£II)./ + a) - ).n
4
(£11 + 8cx 21t -2et6) - )./0', (2.37)

O{().n) =O'/XA.,,3[£1I + e\6(eI6 + e21)] + O'2cx).n,

t/lt().n) = - 4tXO'1t -2{).n
3
[£11 + eI6(e\6 + e21)] + ).nO'},

t/I{().n) = (a /2){ - w2(O').n2£1I + 0'2) + ).n4£IICII + A.,,2O' [CII + £11 + (e16 + e2\)~ + O'2}.

The solution to the elastic scattered wave problem, eqns (2.l8}-(2.20), can be found
in many sources, e.g. [12], and in particular we may express

(2.38)

with

*f(e, r) = - w2sb2eJ.(er)/R(e), !l1fJ(e, r) = - w2sb\eJo(er)/R(e),

fJl<f(e, r) = e2(2e 2- 2V\V2 - w2sl)J\(er)/R(e),

~S)(e, r) = e2(2e 2- 2V\V2 - w2sl)Jo(er)/R(e), (2.39)

R(e) = (2e 2- w2slf - 4V\V2e
2
; v.

2 =e2- W2S.2, Re {v.} ~ o.

At present we have the crystal extensional and flexural, casing, and elastic half-space
solutions in terms of the prescribed amplitudes F/ and E, and the unknown traction
components F(r), H(r), G(r), K(r), T,(r) and T.(r). We now use the interface conditions,
eqns (2.22) and (2.23), to obtain integral equations for the unknown traction components
in terms of the known forcings 110, F{ and E.

Applications of the Hankel transforms ~\ [eqn (2.22)3; r-+e] and ~o [eqn (2.22)4;
r-e] give

(2.40)

Using eqns (2.21), (2.34), (2.36) and (2.38}-(2.4O), we obtain from eqns (2.22)\,2 and (2.23)\,2
the system of integral equations

with

i
l 4

(l-lJa)'P/...r) + L K,J..r, p)'PA/J) dp = A/...r), 0 < r < 1, i = 1,2,3,4,
01-\

(2.41)

and

'P.(r) =F(r), 'P2(r) =G(r), 'P3(r) =H(r), 'P4(r) =K(r), (2.42)
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KI1(r, p) = - iWK LJ\O'l,r)J.O·"p )pR\ -()'II)
.1.>0

K.2(r, p) = - iWK L J.()."r )Jo()."p )pR2- ().,,)
.1.>0

K13(r, p) = - icoK L J.()."r )J\()•..p)pR, +().,,),
.t.>o

KII.(r. p) = - icoK L J.()."r)Jo()."p)pR2+(An),

.t.>o

K2.(r, p) = - L Jo(J."r)J.(J."p)pZ. - (An)
.t.>o
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K22(r, p) =2p( - "IllLJ +yl) - L Jo(J."r)Jo(J."p )pZ2 -(An)- (1C(1·/2W2Sb./,26~)

.t.>o (2.43)

X Joco Jo(~r)Jo(~p )p[~/R(~)] d~.

K24(r,p) =2p("IlIA +"121)+ L JO()."r)Jo(J."p)pZ2+(J.,,),
.t.>0

K3.(r, p) =d, L J,(J.llr)J\()."p )pR\ +(J.J•
.t.>0

K...(r, p) .. d" L JO()."r )J,(J."p )pZ. +(J.,,)•
.1.>0
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K42(r, p) =2d.p("IlIA + "Ill + d" r Jo(,t.r)Jo(A"p)ZI +(,t,,),
1.>0

K43(r, p)= d. r JO(,t.r)Jt(A.p)pZI-(A.),
1.>0

(2.43) contd.

K44(r, p) =2d.p( - "IlIA +"Il- 1C2/4M( 2
) - d. r Jo()."r)Jo()."p )pZ2 -(A.),

l,,>o

In eqn (2.41) we have used the notation

Ih2 = 1; aa = 0, i = 1,3,4,

and in eqn (2.43)

:I: (A ) __2_ [68 l.) 6t(l")J :I:(l )__2_ [6l (l.) 6/0'.)J
R. • - N(lJ ljIE(A.,.) ± ljI'().,,) ,R2 • - N(lJ ljIE(l,,) ± ljI'().,,) ,

Z :I:(1) __2_[tPI
E
().,,) tPt(lJJ Z :I:(1) __2_[tPl(A.,.) tPl(l.)J

1 "'" - N().,,) ljIE(l.) ± ljI'(l.) , 2 "'" - Jo2().,,) ljIE(l,,) ± ljI'(l.) ,

d, = - w2m, - iwc, +kit d,. = - w2m. - iwc. + k•.

(2.44)

(2.45)

Equations (2.41)1-4 are four coupled integral equations for determining F(r), G(r), H(r)
and K(r) on 0 < r < 1. From the solution of eqn (2.41), T,(r) and T,(r) are obtained via
eqns (2.22h...

Ifeqns (2.41)1-4 are solved for F(r), G(r), H(r) and K(r) in terms of 110, E and F2c, then
by use of eqn (2.34), we may express the transducer voltage and current amplitudes 2B
and I in terms of these quantities. Likewise, the axisymmetric torsionless components of
the scattered wave in the elastic half-space, the casing displacements and the crystal
displacements can be expressed in terms of 110, E and F2c by the use of eqns (2.21), (2.34),
(2.36), (2.38) and (2.40). Hence the torsionless axisymmetric steady vibration solution is
complete once eqns (2.41 )1-4 are solved.

The system of integral equations, eqn (2.41), can be solved in a manner similar to that
employed in [IS]. These equations are also undoubtedly singular, and their algebraic
complexity makes their numerical solutions quite tedious and expensive. Rather than
pursuing their solution we have chosen to consider plausible simplifying assumptions
which allow us to get some of the desired results without solving the integral equations.

3. APPROXIMATIONS ON THE TIME HARMONIC PROBLEM

In this section we present some approximations to the problem formulation of Section
2 in order to simplify the integral equations, eqn (2.41). We give two approximations of
the crystal/test medium interaction. They alter only the crystal/elastic half-space interface
conditions, eqn (2.22), and not the crystal/backing interface conditions, eqn (2.23). Hence,
they alter the system of integral equations, eqn (2.41), only for i = 1, 2, and leave the
equations unchanged for i = 3, 4.

In the complete problem, the presence of the transducer on the test medium surface
causes the scattering of the incident wave in the test medium and nonzero tractions at the
interface between the transducer and tcst medium. The first· approximation neglects the
scattered wave part of the test medium displacement, while the second involves the
postulating of the interface tractions. Both circumvent the difficult modeling of the
transducer/test medium coupling.
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Prescribed displacements on the crystal bottom surface
This approximation simplifies the integral equations, eqns (2.41)1,2' by removing the

integral terms in the kernels. This allows an explicit representation of the quantities B, I,
u~O)(r), u~I)(r), u~)(r), u~J)(r) and ufG as functions of "0, F{, E, co and the various material
parameters.

First we assume the scattered wave part of the elastic half-space displacement is zero.
With this assumption, eqns (2.22)1,2 become

and eqns (2.22)3,. become

F(r) = 0, G(r) = O. (3.2)

The conditions, eqns (3.1) and (3.2), together overspecify the first order plate theory crystal
problem. We must therefore use only one of the following four pairs of crystal bottom
surface conditions: eqns (3.1 )1,2, eqns (3.2)1,2' eqns (3.1)1 and (3.2)2' or eqns (3.1hand (3.2)1'
The second choice is clearly inadequate. since with it we would lose the incident surface
wave nature of the problem. The last two, mixed, choices might also be worthy of study,
but we pursue here only the first choice, i.e. we specify the crystal bottom surface
displacements.

We replace eqns (2.22b with eqn (3.1) and abandon eqns (2.22h•. The integral
equation (2.41)],2 are then replaced by

i
l

•L K'fJ..r,p)'Pjp)dp =A/(r),O<r < I,i= 1,2,
o j-I

in which the kernel functions now have no integral terms, and are given by

K11(r, p) = L JI()·.r)JI(A.p)pRI-(A.),
A.>O

K12(r, p) = L J.(A.r )JO(A.P )pR2- (A.),
A.>O

Kt3(r, p) = L JI(A.r )JI(AIlP )pR. + (A.Il),
A.>O

Kt.(r, p) = L JI (A.llr)Jo(~ )pR2+ (A.Il),
A.>O

Ald(.r) = iUoJI(ClJSR'), K~I(r, p) = - L JO(A"r)JI(A."p )pZI - (l,,),
A.>O

K1J(r, p) = - L Jo(A"r)JI(A.~ )pZI + (A..),
A.>O

Kf.(r, p) =2p [("IlI.1) +"Ill + L Jo()."r)Jo(~ )pZ2+(l,,),
A.>O

(3.3)

(3.4)
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The integral equations, eqns (2.41)3,4, remain unchanged. The problem for the
determination of the interface traction components F(r), G(r), H(r) and K(r) has now been
reduced to eqns (2.41)3.4 and (3.3)1,2' together with eqns (2.42), (2.43)11_20 and (3.4). Only
summation terms occur in the kernels, and with the use of eqn (2.27) the problem can be
written as follows, for 0 < r < I:

L J1(,V)[R1-()"n)FO.•) + R2 -(An)G(A'n) + R1+(A.)R(A.) - R2+(A.)K(A,,)] = iuoJl(CJJSllr),
1.>0

2[(yl/.d) - YllG(O) - 2[(Y2£/.d) + YllK(O) + L Jo()...r)[ZI-()".)F(A.) + Z2 -(A,,)G(An)
.l,,>o

+ ZI +(A.)R(An) - Z2 +(A.)K(A.)] =(2/n)a l/2iuoJO(CJJsllr)[2'7 i 2(lXl - lX2-1)

+ lX2-1] - (2yl/.d )E,
(3.5)

d.-1H(r) + L J1(A.r)[R1+(A,,)F()..J + R2+(A.)G(A.) + R1-(A,,)R(A.) - R2-(A,,)K(A,,)} =0,
1.>0

dn-1K(r) +2[(yl/.1) + I'lJG(O) - 2[(l'l/.1) - I'l+ (n2/4Mw~]K(0)

+ ~ JO(Anr)[ZI +(An)F(An) + Z2 +(An)G(An) + ZI -(An)fJ(An ) - Z2 -(An)K(An)]
A.>O

We define

'(lX, fJ) = fa' J1(lXr )J1(fJr)r dr, tJ(lX, fJ) = fa' Jo(ar )Jo(fJr)r dr, (3.6)

(3.7)

We apply the Hankel transforms 3'{1 [eqns (3.5)1,3; r-+A.", > 0] and .1t'0 [eqns (3.51.4;
r-+Am > 0], and, using eqns (2.28)s and (3.7) we obtain for A" > 0

R1- (A.)F(A.) + R2- (A.)G(An) + R1+(A.)R(A.) - R2+(A.)K(A,,) = [2iUo/J0
2(A,,)]'(CJJSIl' An),

ZI - (A.)F(An) + Z2 - (A.)G(A,,) + ZI +(A.)R(A,,) - Z2 +(A.)K(A.)

=[4iUoa /nN(A.)][2'7 i 2(lX1 -lX2-
1
) + lX2-I]tJ(CJJSR, An), (3.8)

R1+(A.)F(A.) + R2+(A.)G(A.) + ([2/d.N(A,,)] + R1-(A,,)}R(A.) - R2-(A,,)K(A.) =0,

Z. +(A.)F(A.) + Z2 +(A.)G(A.) + ZI-(A,,)R(A.) + ([2/d,.Jl(A,,)] - Z2 -()..J}K(A,,) =o.

Applying the Hankel transforms .1t'0 [eqns (3.5)2,4; r-+O] and using eqn (2.28)" we obtain

[(yl/.d) - Yl1G(0) - [(1'2£/.1) + I'llK(O) = (2/n )a l/2iuol2'7 i 2(lX1- lX2-1)

+ Qi 1][J1(CUSR)/CUSR] - (ysE/A)E,

(3.9)

[(I'l/.d) + Y{li(O) + [d; 1 - (yl/.d) + yl- (1t2/4MCJJ~]K(O)= - (yl/.d)E - (2MCJJ2)-IF{.

In making the assumption of prescribed crystal bottom surface displacements we have
removed the elastic scattered wave problem from the transducer/test medium interaction
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problem. The resulting problem still couples the crystal extensional and ftexural defor­
mations, transducer voltage and current, and casing motion. From Section 2 we see that
these unknowns are expressed in tenns of the interface tractions only through their finite
Hankel transforms F().,,), a().,,), D().,,), k().,,), l" > 0, ~(o) and k(O), and to obtain them
we need not solve the coupled integral equations problem, eqns (2.41 h4 and (3.3)1.3' for
F(r), G(r), H(r) and K(r), 0 < r < I. We need only to solve the algebraic system of eqns
(3.8) and (3.9) for F(l,,), ~(l,,), B(l,,), kO.,,), )." > 0, ~(O) and k(O).

We note that this algebraic problem decouples for each )." ~ O. In particular, we solve
eqn (3.9) to obtain

0(0) ={[d,,-'- (·hE/~)+Y/- (n2/4Mco~K2/1t)qll2iUoC2"i2(tXI- CZ2-1) + czi l
]

x lJ.(ws/t)/ws/t] + ('Ys"/J)[(1T2/4Mw2) - d;; I - 2'Y/"]£ - l('Y2"/J)

+ yl](2Mco~-IF{}D -I, (3.10)

k(O) ={- [(yl/Lf) +Yl'J(2/n)q l12iUoC2" i 2(tXI - CZ2-1) + tXi I][JI(COS,J/cos,.J

+ (2ybl/t.1)E - [(Y2E/t.1) - Yll(2Mco2)-IF{}D -I,

with

(3.11)

From eqns (2.33), (2.34), (2.37) and (3.10) we obtain the desired transducer output voltage
and current as

B =2den(~D)-I{d,,-I- co -2[(n2/4M) + 1]}[2"i2(czI - CZ2-1)

+ CZ2-I]Q '12iUo[JI(cos,J/cos,.J + (n~) -I( - co2+ Cn (3.12)

+ 4cxehd(n~D)-I{d,,-1 - co -2[(n2/4M) + 2]}>E + cbten(2t.1Mco4)-IF{,

/ = - (ito /d)(2B +E),

where

t.1 = d(co2- Cn - 4cxehn - I) + 2(co2- cn}n -I,

D = [(d + 2n -I)~ -I + (2co2)-I][d;1 - (n2/4Mco 2)] - 2(d + 2n -1)(~C02)-I, (3.13)

d= -w2L -iwR + C-I,d,,= -w2m"-iwc,,+k,,.

Hence, in eqns (3.12) and (3.13) we have expressed the transducer voltage and current
amplitudes explicitly in tenns of flo, E, F2t, co and the various material parameters.

Equation (3.8) can be solved separately for F().,,), <1().,,), D().,,) and k(l,,), for each
)." > 0, in tenns of "0, wand the material parameters. With these solutions and eqn (3.10),
we can also express the torsionless axisymmetric crystal deformations u~), U~I), u~), U~I) and
casing motion ufG, in tenns of "0, E, F2

t
, co and the material parameters, from eqns (2.21),

(2.31), (2.34), (2.36) and (2.37).

Prescribed tractions on the crystal bottom surface
, By specifying the torsionless axisymmetric traction components on the crystal bottom

surface we simplify the problem through the elimination of F(r) and G(r) as unknowns,
and hence we halve the number of integral. equations to be solved. This approximation
also allows a simple algebraic solution of the steady vibration interaction problem, in the
manner of the previous approximation.

We restrict our attention to transducer/test medium systems in which the transducer
is operating in the receiving mode, i.e. E and F{ are specified to be zero, so that the
crystal/structure interface tractions are entirely due to the incident wave. Recall from eqn
(2.8) that the incident wave is a straight crested surface wave travelling in the XI' direction.
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We assume the interface traction field is also a straight crested wave travelling in the XI'

direction, with the same speed and wave length as the incident wave. Hence, we assume

T1(XI, - b, X3' t) = Re {T.(Uo) e-iw(I- \)}, T3(x\> - b, X3' t) =0,

T2(xl> -b'x3't)=Re{T2(Uo)e-iw(I- \)}, (3.14)

where the functions T1(Uo) and T2(Uo) must be specified. From eqn (2.4) we see that, for
O<r <0,

(3.15)

In nondimensional form with tildes deleted we therefore have, for 0 < r < 1,

(3.16)

Equations (3.16)1.2 replace eqns (2.22)1-4 and also eqns (2.41)1.2. The interface traction
components H(r) and K(r) are still unknown and may be determined from the remaining
integral equations, eqns (2.41)3,4, with F(r) and G(r) specified by eqn (3.16).

In a manner similar to that used for the previous approximation, we may transform
these integral equations and can then solve algebraically for BO.,,), 1(A,,), A" > 0, and 1(0).
This allows an explicit representation of B, /, u~O), u~l), u~), u~l) and ufG in terms of T.(Uo),
T2(Uo), wand the various material parameters (see [12]). In particular, we obtain for the
transducer output voltage

B = d1ten .1 -IT2(Uo)(1 + [(2w2)-1 - (d + 21t -1).1 -IJ{(d + 21t -1).1 -I - d,,-l (3.17)

+ (2w 2) -1[1 + (7T2/2M)]) -1)[J1(WSR)lwSR],

with

.1 :::; d(w2 - ('22 - 4ae~27T- I) + 2(w2 - C22l7T- 1,

d= - w2L - iwR + C- I
, dn = - w2m" - iwc" + kn• (3.18)

And, since F(r) and G(r) are specified, we may also give the scattered wave displacement
in the test medium.

Transducer output for incident surface wave only
For the case of an incident surface wave with amplitude Uo, and in the absence of the

forcing terms E and F{, the approximations studied in this section lead to transducer
output voltage formulas of similar form. Equation (3.12), obtained from the prescribed
displacement assumption, can be written as

(3.19)

whereas eqn (3.17), obtained from the prescribed traction assumption, also has the form

(3.20)

provided we assume T2(Uo) is proportional to Uo.
The functionsf"'(w) andf,(w) are rational functions of w, which also depend on several

physical parameters. Some of these parameters, such as the viscoelastic foundation
parameters mn, Crt and kn, are not known for a 8iven transducer, and they would have to
be determined by appropriate experiments before eqns (3.19) or (3.20) can be numerically
evaluated.

As expected B(w) in eqns (3.19) and (3.20) depends linearly on Uo. In addition, these
expressions predict the same frequencies at which B(w) vanishes. These null frequencies
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for B(w) would be expected on the basis of the commonly observed phenomenon often
referred to as "phase cancellation". Equations (3.19) and (3.20) predict

where

or, from eqn (2.24),

B(wJ =0,

J.(wwStd = 0, n = 1,2, ...

(3.21)

(3.22)

(3.23)

Taking into account the nondimensionalization, eqn (2.11), the null frequencies in
dimensional form are

In terms of the incident Rayleigh wavelength AR this result becomes

A~) =21ta/).", n =1,2, ...

Since ).. ~ 3.831, ).2 ~ 7.016, etc. it follows that

A~) ~ 1.64Oa, A~) ~ 0.89560, ...

(3.24)

(3.25)

(3.26)

Therefore the first null in B occurs at an incident wavelength somewhat less than 20.

4. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the transducer/test medium configuration of a
piezoelectric transducer, typical of those commercially available, coupled viscously
through its bottom surface to the test medium surface. The transducer was considered in
both its sending and receiving modes of operation (for the sending transducer we did not
specify the voltage across the piezoelectric crystal electrodes, but rather the voltage of a
source in the electric circuit connecting the electrodes).

An important result from [12] is the demonstration that the voltage across the
transducer crystal and current in the transducer circuit couple only with the torsionless
axisymmetric parts of the transducer/test medium configuration's deformation and
tractions. This is a result of the axisymmetric nature of our models for the transducer, test
medium and couplant, as well as the presence of the face electrodes. Hence, the receiving
transducer will only detect the torsionless axisymmetric component of its incident forcing,
and the sending transducer will generate a torsionless axisymmetric signal in the test
medium. Mathematically, this result leads to a significant simplification of the analysis as
a general nonaxisymmetric problem is reduced to a torsionless axisymmetric one.

The steady vibration problem considered in this paper has the transducer forced by an
incident surface wave in the test medium, a voltage source in the transducer circuit and
tractions acting on the transducer casing. We reduced this problem to a set of coupled
integral equations. In Section 3 we made assumptions on the nature of the transducer
bottom surface/test medium surface interaction and were able to obtain the transducer
voltage and current in terms of the forcing amplitudes, material parameters, and frequency
ofvibration, without solving the integral equations (a future task is to more carefully study
the dependence of B and Ion these quantities). In fact, for the assumptions of prescribed
tractions on the transducer bottom surface we showed that the problem can be entirely
solved (i.e. we may obtain the transducer voltage and current, and the torsionless
axisymmetric parts of the transducer and test medium deformations in terms of the forcing
amplitudes, material parameters, and frequency) algebraically, without solving any
integral equations.
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The conditions of phase cancellation in a circular transducer for straight crested
incident surface waves was obtained for both approximations and is given by eqn (3.26).

In future work this condition will be compared with experiments and the more general
results in eqns (3.12) and (3.17) will be computed for various assumptions on the
parameters. These results will also be compared with experiments.
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